

Subsonic and Transonic Testing of Two Inflatable Aerodynamic Decelerators

Christopher L. Tanner, Juan R. Cruz, Monica F. Hughes, Ian G. Clark, Robert D. Braun

7th International Planetary Probe Workshop

17 June 2010

Inflatable Aerodynamic Decelerators (IADs)

- Supersonic IADs are alternate technology to supersonic parachutes
 - Attached to the entry vehicle around its maximum perimeter
 - Deployed after peak entry heating
 - Mach ≤ 5
- Decrease entry vehicle ballistic coefficient

$$\beta = \frac{m}{C_D A}$$

- Textile construction
- Diameters ranging from 5 to 15 m
- Enable future robotic missions to Mars
 - Greater landed mass
 - Higher landing altitude

Inflatable Aerodynamic Decelerators (IADs)

- Candidate designs:
 - Tension cone
 - Attached isotensoid
- Supersonic wind tunnel testing has been performed on both designs
 - Good drag performance
 - Rapid, stable inflation

- Transonic and subsonic testing had not been performed
 - Aerodynamic performance and stability are not quantified in these regimes
 - Data needed for ground acquisition and lander separation analyses

Transonic Testing

Testing was performed in the Transonic Dynamics
Tunnel (TDT) at the NASA Langley Research Center

Test Objectives:

- Quantify static aerodynamic performance
- Quantify static aeroelastic behavior
- Investigate dynamic behavior

Mach range: 0.30 to 1.08

Reynolds number range: 250K to 2.5M

Angle of attack range: -5° to 15°

Tension Cone IAD

- Tension shell shape designed to carry only tensile stress when loaded
- Wind tunnel model:
 - 0.6 m total IAD diameter
 - 70° aeroshell
 - Flexible tension shell
 - Rigid torus
 - 16-sided polygon
- Two models: without and with burble fence
 - Burble fence is meant to enhance transonic and subsonic stability

0° AoA

9° AoA

0° AoA

9° AoA

- Profiles extracted from high resolution images
- Essentially same profile at M = 0.3 and 1.08, similar to design shape
- Models exhibit slight nose-up pitch (approx. 0.7°) at 0° AoA due to weight of torus

- Tension cone oscillates at subsonic speeds [video]
 - 0° AoA [DVR3 501]
 - 9° AoA [DVR3 502]
- Burble fence relatively ineffective in controlling oscillations [DVR3 933]
- Very stable at supersonic speeds

Isotensoid IAD

- Isotensoid shape designed to carry uniform fabric stress and constant meridional cord tension
- Wind tunnel model:
 - 0.66 m design diameter
 - 60° aeroshell
 - Ram-air inflated
 - Burble fence
 - 16-sided polygon
- Two identical models

0° AoA

9° AoA

0° AoA

9° AoA

- Profiles extracted from high resolution images
- Isotensoid shape design at supersonic conditions
 - Subsonic shape very close to design shape
 - Transonic shape considerably different than design shape
- Shape is a function of internal pressure, windward pressure distribution, and back pressure

- Dynamic motion at subsonic speeds
 - 0° AoA [DVR4 492]
 - 9° AoA [DVR4 495]
- Stable at supersonic speeds

Supersonic IAD Summary

Mach Number

Continuing Work

 Estimate uncertainties of aerodynamic coefficients

- In-situ measurement of decelerator shape
- Torus offset angle
- Tension cone oscillation frequency

 Publication of complete results in NASA technical report

<u>Acknowledgements</u>

- Personnel at NASA Langley Research Center
 - Atmospheric Flight and Entry Systems Branch
 - Advanced Sensing and Optical Measurement Branch
 - Transonic Dynamics Tunnel
- ILC Dover
 - Model design and fabrication

